-
Stucchi思多奇
-
NITTO KOHKI日...
-
Sankei
-
KYOWA協和工業
- DIT東日技研
- AITEC艾泰克
-
SIGMAKOKI西格瑪...
- REVOX萊寶克斯
- CCS 希希愛視
- SIMCO思美高
- POLARI0N普拉瑞
- HOKUYO北陽電機
- SSD西西蒂
- EMIC 愛美克
- TOFCO東富科
-
打印機
- HORIBA崛場
- OTSUKA大冢電子
- MITAKA三鷹
- EYE巖崎
- KOSAKA小坂
-
SAGADEN嵯峨電機
- TOKYO KEISO東...
- takikawa 日本瀧...
- Yamato雅馬拓
- sanko三高
- SEN特殊光源
-
SENSEZ 靜雄傳感器
- marktec碼科泰克
- KYOWA共和
- FUJICON富士
- SANKO山高
-
Sugiyama杉山電機
-
Osakavacuum大...
-
YAMARI 山里三洋
- ACE大流量計
- KEM京都電子
- imao今尾
- AND艾安得
- EYELA東京理化
- ANRITSU安立計器
- JIKCO 吉高
- NiKon 尼康
- DNK科研
- Nordson諾信
- PISCO匹斯克
- NS精密科學
- NDK 日本電色
-
山里YAMARI
- SND日新
-
Otsuka大塚電子
- kotohira琴平工業
- YAMABISHI山菱
- OMRON歐姆龍
- SAKURAI櫻井
- UNILAM優尼光
- ONO SOKKI小野測...
-
U-Technology...
- ITON伊藤
- chuhatsu中央發明...
- TOADKK東亞
- HOYA豪雅
- COSMOS日本新宇宙
-
UENO上野精機
- DSK電通產業
-
POLARION普拉瑞
- LUCEO魯機歐
- ThreeBond三鍵
-
HAMAMASTU濱松
-
TML東京測器
- SHINAGAWA SO...
- IMV愛睦威
- custom 東洋計量
- yuasa 尤阿薩
- HAYASHI林時計
- SIBATA柴田科學
- SEN日森特殊光源
-
HSK 平原精機
-
SOMA相馬光學
- iwata巖田
- MUSASHI武藏
- USHIO牛尾
- ACTUNI阿庫圖
- ORC歐阿希
- DRY-CABI德瑞卡比
- COSMO科斯莫
-
SHOWASOKKI昭和...
-
CHUBUSEKI中部精...
-
SAMCO薩姆肯
- navitar 納維塔
- ASKER 高分子計器
- KOSAKA Labor...
- EMIC愛美克
-
OPTEX奧泰斯
- NISSIN日進電子
- TANDD 蒂和日
- FUJI TERMINA...
- TAKASAGO高砂
- TAKIKAWA瀧川
- SUGAWARA菅原
- MACOME碼控美
-
FURUKAWA古河
-
TSUBOSAKA壺坂
- mitutoyo 三豐
- HAYASHI 林時計
- HOZAN 寶山
- FEI SEM電子顕微鏡
- YUASA尤阿薩
- SAKAGUCHI坂口電...
-
MDCOM 株式會社
-
inflidge 英富麗
- RKC 理化工業
- MORITEX茉麗特
- LIGHTING 光屋L...
- TEITSU帝通
- Excel聽音機
- SERIC索萊克
-
FUJI富士化學
-
TONCON拓豐
-
SHINKO新光電子
- Ono Sokki 小...
- 樂彩
- IIJIMA 飯島電子
- THOMAS托馬斯
- JIKCO吉高
- 分散材料研究所
-
NAVITAR納維塔
- Cho-Onpa 超音波...
- revox 萊寶克斯
- Toki Sangyo ...
- SUPERTOOL世霸
- EIWA榮和
- FUJITERMINAL...
- TOYOX東洋克斯
- AMAYA天谷制作所
-
TSUBAKI NAKA...
- TOPCON 拓普康
- NIKKATO日陶
- ITOH伊藤
- NEWKON新光
- SIBATA柴田
-
TAISEI
-
MITSUI三井電氣
-
加熱器
- SEN日森
嵌入式膜厚儀FE-5000
在高精度薄膜分析的光譜橢偏儀之上,增加安裝了測量角度可自動變化裝置,可對應所有種類的薄膜。在傳統旋轉分析儀法之上,通過安裝相位差板自動分離裝置,提高了測量精度。
產品信息
特點
-
可在紫外和可見(250至800nm)波長區域中測量橢圓參數
-
可分析納米級多層薄膜的厚度
-
可以通過超過400ch的多通道光譜快速測量Ellipso光譜
-
通過可變反射角測量,可詳細分析薄膜
-
通過創建光學常數數據庫和追加菜單注冊功能,增強操作便利性
-
通過層膜貼合分析的光學常數測量可控制膜厚度/膜質量
測量項目
-
測量橢圓參數(TANψ,COSΔ)
-
光學常數(n:折射率,k:消光系數)分析
-
薄膜厚度分析
用途
-
半導體晶圓
柵氧化膜,氮化膜
SiO2,SixOy,SiN,SiON,SiNx,Al2O3,SiNxOy,poly-Si,ZnSe,BPSG,TiN
光學常數(波長色散)
-
復合半導體
AlxGa(1-x)多層膜、非晶硅
-
FPD
取向膜
等離子顯示器用ITO、MgO等
-
各種新材料
DLC(類金剛石碳)、超導薄膜、磁頭薄膜
-
光學薄膜
TiO2,SiO2多層膜、防反射膜、反射膜
-
光刻領域
g線(436nm)、h線(405nm)、i線(365nm)和KrF(248nm)等波長的n、k評估
原理
包括s波和p波的線性偏振光入射到樣品上,對于反射光的橢圓偏振光進行測量。s波和p波的位相和振幅獨立變化,可以得出比線性偏振光中兩種偏光的變換參數,即p波和S波的反射率的比tanψ相位差Δ。
產品規格
型號
FE-5000S
FE-5000
測量樣品
反射測量樣品
樣品尺寸
100x100毫米
200x200毫米
測量方法
旋轉分析儀方法*1
測量膜厚范圍(ND)
0.1納米-
入射(反射)的角度范圍
45至90°
45至90°
入射(反射)的角度驅動方式
自動標志桿驅動方法
入射點直徑*2
關于φ2.0
關于φ1.2sup*3
tanψ測量精度
±0.01以下
cosΔ測量精度
±0.01以下
薄膜厚度的可重復性
0.01%以下*4
測定波長范圍*5
300至800納米
250至800納米
光譜檢測器
多色儀(PDA,CCD)
測量用光源
高穩定性氙燈*6
平臺驅動方式
手動
手動/自動
裝載機兼容
不可
可
尺寸,重量
650(W)×400(D)×560(H)mm
約50公斤
1300(W)×900(D)×1750(H)mm
約350公斤*7
軟件
分析
*小二乘薄膜分析(折射率模型函數,Cauchy色散方程模型方程,nk-Cauchy色散模型分析等)
理論方程分析(體表面nk分析,角度依賴同時分析)
*1可以驅動偏振器,可以分離不感帶有效的位相板。
*2取決于短軸?角度。
*3對應微小點(可選)
*4它是使用VLSI標準SiO2膜(100nm)時的值。
*5可以在此波長范圍內進行選擇。
*6光源因測量波長而異。
*7選擇自動平臺時的值。
測量示例
以梯度模型分析ITO結構[FE-0006]
作為用于液晶顯示器等的透明電極材料ITO(氧化銦錫),在成膜后的退火處理(熱處理)可改善其導電性和色調。此時,氧氣狀態和結晶度也發生變化,但是這種變化相對于膜的厚度是逐漸變化的,不能將其視為具有光學均勻組成的單層膜。
以下介紹對于這種類型的ITO,通過使用梯度模型,從上界面和下界面的nk測量斜率。
考慮到表面粗糙度測量膜厚度值[FE-0008]
當樣品表面存在粗糙度(Roughness)時,將表面粗糙度和空氣(air)及膜厚材料以1:1的比例混合,模擬為“粗糙層”,可以分析粗糙度和膜厚度。以下介紹了測量表面粗糙度為幾nm的SiN(氮化硅)的情況。
使用非干涉層模型測量封裝的有機EL材料[FE-0011]
有機EL材料易受氧氣和水分的影響,并且在正常大氣條件下它們可能會發生變質和損壞。因此,在成膜后立即用玻璃密封。以下介紹在密封狀態下通過玻璃測量膜厚度的情況。玻璃和中間空氣層使用非干涉層模型。
使用多點相同分析測量未知的超薄nk[FE-0014]
為了通過擬合*小二乘法來分析膜厚度值(d)需要材料nk。如果nk未知,則d和nk都被分析為可變參數。然而,在d為100nm或更小的超薄膜的情況下,d和nk是無法分離的,因此精度將降低并且將無法求出**的d。在這種情況下,測量不同d的多個樣本,假設nk是相同的,并進行同時分析(多點相同分析),則可以高精度、**地求出nk和d。
嵌入式膜厚儀FE-5000
在高精度薄膜分析的光譜橢偏儀之上,增加安裝了測量角度可自動變化裝置,可對應所有種類的薄膜。在傳統旋轉分析儀法之上,通過安裝相位差板自動分離裝置,提高了測量精度。
產品信息
特點
-
可在紫外和可見(250至800nm)波長區域中測量橢圓參數
-
可分析納米級多層薄膜的厚度
-
可以通過超過400ch的多通道光譜快速測量Ellipso光譜
-
通過可變反射角測量,可詳細分析薄膜
-
通過創建光學常數數據庫和追加菜單注冊功能,增強操作便利性
-
通過層膜貼合分析的光學常數測量可控制膜厚度/膜質量
測量項目
-
測量橢圓參數(TANψ,COSΔ)
-
光學常數(n:折射率,k:消光系數)分析
-
薄膜厚度分析
用途
-
半導體晶圓
柵氧化膜,氮化膜
SiO2,SixOy,SiN,SiON,SiNx,Al2O3,SiNxOy,poly-Si,ZnSe,BPSG,TiN
光學常數(波長色散) -
復合半導體
AlxGa(1-x)多層膜、非晶硅 -
FPD
取向膜
等離子顯示器用ITO、MgO等 -
各種新材料
DLC(類金剛石碳)、超導薄膜、磁頭薄膜 -
光學薄膜
TiO2,SiO2多層膜、防反射膜、反射膜 -
光刻領域
g線(436nm)、h線(405nm)、i線(365nm)和KrF(248nm)等波長的n、k評估
原理
包括s波和p波的線性偏振光入射到樣品上,對于反射光的橢圓偏振光進行測量。s波和p波的位相和振幅獨立變化,可以得出比線性偏振光中兩種偏光的變換參數,即p波和S波的反射率的比tanψ相位差Δ。
產品規格
型號 | FE-5000S | FE-5000 |
---|---|---|
測量樣品 | 反射測量樣品 | |
樣品尺寸 | 100x100毫米 | 200x200毫米 |
測量方法 | 旋轉分析儀方法*1 | |
測量膜厚范圍(ND) | 0.1納米- | |
入射(反射)的角度范圍 | 45至90° | 45至90° |
入射(反射)的角度驅動方式 | 自動標志桿驅動方法 | |
入射點直徑*2 | 關于φ2.0 | 關于φ1.2sup*3 |
tanψ測量精度 | ±0.01以下 | |
cosΔ測量精度 | ±0.01以下 | |
薄膜厚度的可重復性 | 0.01%以下*4 | |
測定波長范圍*5 | 300至800納米 | 250至800納米 |
光譜檢測器 | 多色儀(PDA,CCD) | |
測量用光源 | 高穩定性氙燈*6 | |
平臺驅動方式 | 手動 | 手動/自動 |
裝載機兼容 | 不可 | 可 |
尺寸,重量 |
650(W)×400(D)×560(H)mm 約50公斤 |
1300(W)×900(D)×1750(H)mm 約350公斤*7 |
軟件 | ||
分析 |
*小二乘薄膜分析(折射率模型函數,Cauchy色散方程模型方程,nk-Cauchy色散模型分析等) 理論方程分析(體表面nk分析,角度依賴同時分析) |
*1可以驅動偏振器,可以分離不感帶有效的位相板。
*2取決于短軸?角度。
*3對應微小點(可選)
*4它是使用VLSI標準SiO2膜(100nm)時的值。
*5可以在此波長范圍內進行選擇。
*6光源因測量波長而異。
*7選擇自動平臺時的值。
測量示例
以梯度模型分析ITO結構[FE-0006]
作為用于液晶顯示器等的透明電極材料ITO(氧化銦錫),在成膜后的退火處理(熱處理)可改善其導電性和色調。此時,氧氣狀態和結晶度也發生變化,但是這種變化相對于膜的厚度是逐漸變化的,不能將其視為具有光學均勻組成的單層膜。
以下介紹對于這種類型的ITO,通過使用梯度模型,從上界面和下界面的nk測量斜率。
考慮到表面粗糙度測量膜厚度值[FE-0008]
當樣品表面存在粗糙度(Roughness)時,將表面粗糙度和空氣(air)及膜厚材料以1:1的比例混合,模擬為“粗糙層”,可以分析粗糙度和膜厚度。以下介紹了測量表面粗糙度為幾nm的SiN(氮化硅)的情況。
使用非干涉層模型測量封裝的有機EL材料[FE-0011]
有機EL材料易受氧氣和水分的影響,并且在正常大氣條件下它們可能會發生變質和損壞。因此,在成膜后立即用玻璃密封。以下介紹在密封狀態下通過玻璃測量膜厚度的情況。玻璃和中間空氣層使用非干涉層模型。
使用多點相同分析測量未知的超薄nk[FE-0014]
為了通過擬合*小二乘法來分析膜厚度值(d)需要材料nk。如果nk未知,則d和nk都被分析為可變參數。然而,在d為100nm或更小的超薄膜的情況下,d和nk是無法分離的,因此精度將降低并且將無法求出**的d。在這種情況下,測量不同d的多個樣本,假設nk是相同的,并進行同時分析(多點相同分析),則可以高精度、**地求出nk和d。